

The emerging hydrogen economy

Prof. Dr. Daniel HISSEL Univ. Bourgogne Franche-Comte, France

FEMTO-ST Institute, UMR CNRS 6174 FCLAB, USR CNRS

daniel.hissel@univ-fcomte.fr

Author

Professor Daniel Hissel

- Deputy-Director, French National Hydrogen Research Federation (CNRS)
- Head of "Electrical actuators, Hybrid & Fuel Cell Systems" research team, FEMTO-ST Institute (CNRS)
- Recipient, Blondel Medal 2017
- Recipient, CNRS Innovation Medal 2020

daniel.hissel@univ-fcomte.fr

Motivations

- Part 1 Fuel Cell technology and PEMFC Systems
- Part 2 What are the targets for a mass market ?
- Part 3 Open issues & ongoing research actions
- Part 4 Overview of hydrogen applications
- **Concluding remarks**

The emerging hydrogen economy

Motivations & status

Hydrogen...

The most abundant element in the universe...

... 75% in mass and 92% in number of atoms

Very high energy density...

- ... 33kWh/kg
- ... > 3x gasoline
- ... > 100x electrochemical batteries

Almost never in molecular state on Earth...

- ... it must be produced
- ... energy vector (duality with electricity)

Hydrogen production

Hydrogen

"Blue" H2 : production based on fossil fuels + released CO₂ captured or water electrolysis and electricity coming from low carbon power plants

"Green" H2 : production based on water electrolysis and/or from renewables

Hydrogen market in 2050

- 18% of global energy demand
- US\$ 2500 billion market worth
- 30 millions of jobs around the world
- Reducing CO2 emissions by 6GT per year

Source : Petroleum Economist 2018

7

Hydrogen market - today

Evolution of annual global demand of H₂

- Major usages :
 - Crude oil refining
 - Ammonia synthesis
 - Chemical industry
 - Metallurgy

Source : IEA 2019 DRI : Direct Reduction of Iron (Metallurgy)

Hydrogen production costs

- Today :
 - Cost ratio of about 3 between

Η

Hydroger

1.008

 Cost ratio of about 2 between and

SFEN 2020 – Lyon – D. Hissel

Towards hydrogen systems

Switching to fuel cell ? - Transportation applications

Fossil fuel ICE

- Low efficiency
- Limited fossil resources
- Pollutant emissions

First alternative: BEV or HEV

- BEV : Significant progresses BUT :
 - Long duration recharging operation
 - Limited autonomy of the electrical vehicle
 - Limited durability of the batteries
- HEV : reduce rather than eliminate the dependency on fossil fuels...

Second alternative: FCEV

- High efficiency
- (Theoretical & in-situ) pollutant emissions is zero
- Fast recharging high autonomy
- ⇒ Interesting alternative

FC LAB

*1 Tank-to-Wheel efficiency: measured in the Japanese 10-15 test cycle *2 Efficiency difference between 35MPa and 70MPa; approx, 2%

(Toyota Calculation)

Towards hydrogen systems

- Switching to hydrogen ? Stationary applications
 - Increasing interest for the storage of electricity
 - Wide use of renewables
 - Intermittency of renewables

First alternative: "classical" solutions

- Electrochemical batteries, flywheels
 - High cost, limited durability, limited energy density
 - → moreover, limited ability to store electricity for long time
- Pumped storage
 - Large scale only at specific places

Second alternative: hydrogen

- Based on the duality between electricity & hydrogen
- Ability for long duration storage
- Can be considered at a microgrid level and at a grid level
- Can be coupled to refueling of FCV fleets
- ⇒ Interesting alternative

FC LAB

The emerging hydrogen economy

Part 1 – Fuel Cell technology and PEMFC Systems

Fuel Cell technology

– Is Science Fiction becoming Reality ?

Jules Verne, 1875: "The Mysterious Island"

will for a long time yet provide for the consumption in trade. For how long a time? [...] For at least two hundred and fifty or three hundred years.
That is reassuring for us, but a bad look-out for our great-grandchildren! [...] And what will they burn instead of coal? [...] water decomposed into its primitive elements... "

Basic principle discovered and demonstrated in 1839

- British physicist William Grove
- For more than a century, the priority given to the development of thermal machines and electrical batteries overshadowed this invention.

LE LINCOL

Fuel Cell technology

TECHNOLOGIES

Fuel Cell technology

Principle of a fuel cell

What is a Fuel Cell?

- US Fuel Cell Council definition, modified by FC Testing and STandardisation NETwork
 - An electrochemical device that continuously converts the chemical energy of a fuel and an oxidant to electrical energy (DC power), heat and other reaction products. The fuel and oxidant are typically stored outside of the cell and transferred into the cell as the reactants are consumed.
- Main difference with "traditional" battery
 - Fuel is supplied continuously & stored outside
 - Fast recharging ability
 - Energy / Power decoupling

ElringKlinger PEMFC NM5

Taxonomy of Fuel Cell —

(F) FC LAB

femto-st

TECHNOLOGIES

AFC – Apollo (NASA)

PEMFC -Car Appl. (CEA)

SOFC -

Stat. Appl. (MSRI)

	Oper. Temp. (°C)	Power range (W)	Main application area
DMFC	20 – 90	1 – 100	Low-power portable applications (mobile phones, computers)
PEMFC	30 – 100	1 – 100k	Transport Mid power stationary applications Heat & power co-generation (CHP)
AFC	50 – 200	500 – 10k	Spaceships
PAFC	~220	10k – 1M	Domestic heat & power co-generation (CHP)
MCFC	~650	100k – 10M+	High-power units for CHP, maritime applications
SOFC	500 – 1000	1k – 10M+	Same as MCFC + Transport

– PEMFC – operating principle

FC LAB

ECHNOLOGIES

• Fuel / Fuel Oxidizer: H₂ (pure or reformed) / Air

- Structure
 - Structure of a single cell

() FC LAB

FECHNOLOGIES

PEMFC = Polymer Exchange Membrane Fuel Cell

– Structure

Structure of a stack

■ Assembly of several cells in series ⇒ to increase the operation voltage

– Whole PEMFC System

The stack within a whole system

- Stack "only" converts energy...
- Prior to the electrochemical reaction
 - How to supply "produce", store, and supply the hydrogen and oxygen?
- After the electrochemical reaction
 - How to manage the electricity generated?
 - How to manage the heat generated?
 - How to manage the water generated?
- During the electrochemical reaction
 - How to control the process?
 - How to ensure safety of the whole system?
- ⇒ FC System = Stack + Ancillaries

Hydrogen FC Systems

- Fuel cell stack + ancillaries + H2 storage + electrical storage
 - Complex multiphysics system
 - Scientific interdisciplinarity:
 - Electrochemistry, but also: electrical engineering, electronics, control, signal & data treatment, artificial intelligence, industrial computer science, mechanics, thermal science, ... & human and social sciences...

– Whole PEMFC System

The need of electrical hybridization...

- FC = non electrical rechargeable system
- FC = no possibility of recovering braking energy in transport applications
- FC = poor dynamic systems (time constants about 100ms) → smoothing energy requirements is mandatory
- → Ragone plot...
- Hybridization with supercapacitors / flywheels / power batteries?

MC.Péra, D.Hissel, H.Gualous, Ch.Turpin, "Electrochemical components", Wiley, 2013.

The emerging hydrogen economy

Part 2 – What are the targets for a mass market ?

Commercial applications already exist !

Toyota Mirai

to-st

TECHNOLOGIES

Autonomy

Price

 And also residential applications : Panasonic µCHP system

	Features	Values
1.11	Electric Power	750 W
-	Thermal Power	1 kW (19kW peak)
	Supply	Natural gas
1000	Overall efficiency	ca. 90%
	Electric efficiency	ca. 37%
	Price	€20k
() FC LAB		

500 km

Around €50k (or leasing)

A fast growing market...

TECHNOLOGIES

- About 20k vehicles and about 500k stationary systems sold / leased today
 - About 40% grow in MW shipments between 2018 and 2019
- A reference to be reached to ensure a larger market : DOE

[REF] D. Papageorgopoulos, DOE Fuel Cell R&D Activities: Strategy, Advancements, and Opportunities, FDFC'2017 Conference, Stuttgart, Germany, 2017.

- * : ultimate
- ** : for natural gas
- *** : for biogas
- **** : gge = gallon gasoline equivalent = approx. 1kg H2

Where are we today ?

- Electric efficiency

Maximal value of about 45% to 55%

Durability

- → about 3500 hours for vehicle applications
- → about 20000 hours for bus applications
- → about 20000 hours for stationary applications

- Power density

- > 1,5 kW/l for the FC stack
- > 1 kW/l for the fuel cell system

Energy density

NOLOGIES

- Strongly linked to the storage of H2
- Cold start (automotive applications)

FC LAB

From -20°C in 30 seconds without external energy

ElringKlinger PEMFC NM5

Where are we today ?

- Costs

FCS costs

Projected costs for a 80kW-FCS - high-volume manufacturing (500000 units/year) – 2017's status

H2 costs

TECHNOLOGIES

FC LAB

Approx. 6 €/kg (for 80kg/day of H2 distribution) Large refueling station : approx. 1 M€

[REF] J. Wang, H. Wang, Y, Fan, Techno-economic challenges of fuel cell commercialization, Engineering, 2018. [REF] DOE Fact of the Month for April 2018: Fuel Cell Cost Decreased by 60% since 2006, FuelCellsWorks, May 2018.

Costs distribution for a 80kW-FCS 2018's status

Where are we today ?

TECHNOLOGIES

Radar plot regarding the DOE targets

FCS status in 2019 - vehicle applications

The emerging hydrogen economy

Part 3 – Open issues & ongoing research actions

Where are the development headings ?

- Towards enhanced performances
 - Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45-55% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways
 - Public acceptance
 - Socio-economic aspect: hydrogen-based energy is unknown
 - Strong link with public policies
 - Cost (whole life cycle)
 - Linked to industrial deployment
 - "Green" H₂ availability

FC LAB

- Production, storage, distribution

Where are the development headings ?

Towards enhanced performances

- Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45-55% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways

Public acceptance

- Socio-economic aspect: hydrogen-based energy is unknown
- Strong link with public policies
- Cost (whole life cycle)
 - Linked to industrial deployment
- "Green" H₂ availability

FC LAB

- Production, storage, distribution

COST COST

Areas of research : efficiency

- Efficient & dedicated ancillaries are required...
 - Specific power converters, specific air compressor, fuel storage, ...

- "Systemic" optimization of the architecture, taking care of all energy flows

- Electrical flows, thermal flows, gas flows...
- Hybridization with batteries, ultracapacitors, ...
- Advanced control laws

Areas of research : efficiency

Optimize energy flows...

Use of Al approaches

 Optimize simultaneously the energy flows and the system architecture...

(() FC LAB

nto-st

TECHNOLOGIES

Areas of research

Towards enhanced performances

- Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45-55% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways

Public acceptance

- Socio-economic aspect: hydrogen-based energy is unknown
- Strong link with public policies
- Cost (whole life cycle)
 - Linked to industrial deployment
- "Green" H₂ availability
 - Production, storage, distribution

COST COST

Durability

Objectives

- Increase durability of the fuel cell stack and of the fuel cell system
- Increase efficiency of the FC system
- Increase reliability of the FC system
- Increase dynamic performances of the FC systems

FC STACK S.O.H. DIAGNOSTIC / PROGNOSTIC METHODOLOGIES ARE A KEY ISSUE !!!

Constraints

- Use of a minimal number of actual sensors
 - For complexity purpose
 - For cost purpose
 - For reliability purpose
 - For real-time control constraints

TECHNOLOGIES

Example : on-line RUL estimation

TECHNOLOGIES

Example : integrated diagnostic/prognostic algorithm for embedded PEM systems

GIANTLEAP

FUEL CELLS AND HYDROGEN

Areas of research

- Towards enhanced performances

- Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45-55% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways

Public acceptance

- Socio-economic aspect: hydrogen-based energy is unknown
- Strong link with public policies
- Cost (whole life cycle)
 - Linked to industrial deployment
- "Green" H₂ availability
 - Production, storage, distribution

) FC LAB

Areas of research : public acceptance

- A global framework

- Historical approach of H2 & FC
 - Diachronic and synchronic approaches

Public policies

- Strong involvement of governments is required (funding, taxes, ...)
- Funding for innovation & for research
- Key countries: Japan, Germany, China, Canada, USA, South Korea, France, Portugal...

Evaluation / mitigation of risks

- Normalization / standardization
- Certification / evaluation of security issues

Demonstration programs

Assessment of the technology in real world applications

Awareness on the technology

Demonstration programs

FC LAB

Teaching fuel cell from lower classes

Example : Assessment in real world

Mobypost EU project – La Poste objectives

- Economic perspectives :
 - Proof of concept for the vehicle + local production of H2
 - Demonstration of economic viability of H2 for captive fleets
- Energy transition :
 - Reduce CO2 emissions and dependency to fossil fuels
 - Coupling with renewables and storage of excess production
- Social acceptance :
 - Increase postmen's security and working conditions
 - Feedback on regulatory constraints

Key numbers

- 2 demonstration territories in B-FC region
- 2 years experimental trial
- 8 European partners
- 10 FC vehicles
- 920 MM work
- 1682 postal routes covered
- 2017 (demonstration ended in...)

Example : Assessment in real world

Mobypost EU project – Main project objectives

- o Taking care of postmen requirements
- o Design an optimized hybrid FC powertrain
- o Energy flow supervision
- Coupling with renewables (PV panels)
- Hydrogen production & storage on-site
- 1st French FCV fleet (10 vehicles, 2 H2/PV stations) testing in constrained environment (temperature, power demand)

Areas of research

Towards enhanced performances

- Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45-55% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways

Public acceptance

- Socio-economic aspect: hydrogen-based energy is unknown
- Strong link with public policies
- Cost (whole life cycle)
 - Linked to industrial deployment
- "Green" H₂ availability
 - Production, storage, distribution

Areas of developments : costs

Reduce the costs

- A strong industrial interest (source Fuel Cell Industry & Patent Overview 2015 HGF)
 - H2 & Fuel cells are leading to about 6000 patent applications in 2018 (+40% from 2017)
 - Key players : Honda, Toyota, Panasonic, Nissan, GM, Hyundai, Daimler, ...
- 2019's prices

NOLOGIES

- Bout 500€-2000€/kW for one single FC stack projected cost for 500000 units / year = 27€/kW
- 50% FC stack + 50% FC ancillaries
- Boot 1200€/kW for one single WE stack

Areas of developments : costs

– What can be done ?

- Use of lower cost components (EME)
- Process automation (especially for bipolar plates)
- Design of specific ancillaries (e.g. the air compressor)
- Understand in deep the degradation mechanisms
- Optimize the whole system not only the components
- Focus on "interesting" emerging markets (forklifts, micro-CHP, backup power, storage of renewables, military applications (U-boats, portable, backup), aeronautic applications, ...)
- Increase modularity of FC and WE systems

Example : Modularity of FC systems

mal control subsystem

Interests

- Ability to manage degraded mode operation
- Better performances:
 - Maximize efficiency
 - Increased lifetime
- Simplified implementation on board
- Easy scaling-up
- Modular system
 - Same FC system can address different applications (road, trucks, rail, stationary...)
 - Cost reductions

[REF] N. Marx, "Multi-stack FC systems for automotive applications", Cotutelle PhD. Univ. Franche-Comte, Univ. Quebec Trois-Rivières, 2017.

Areas of research

Towards enhanced performances

- Scientific and technological bolts
 - Fuel cell system efficiency
 - Increase it (elec. only) from about 45% to about 55-65%
 - Fuel cell system durability
 - Ex. for PEMFC systems
 - 5000 hours are required for light vehicles (3500 hours obtained)
 - 30000 hours are required for bus & trucks
 - And up to 100000 hours for stationary applications & railways

Public acceptance

- Socio-economic aspect: hydrogen-based energy is unknown
- Strong link with public policies
- Cost (whole life cycle)
 - Linked to industrial deployment
- "Green" H₂ availability
 - Production, storage, distribution

) FC LAB

COST COST

Areas of developments : green H₂ availability

- Increase H₂ production from renewables
 - Today, about 95% of H₂ is coming from fossil fuels
 - steam reforming or partial oxidation of methane
 - coal gasification
 - Key issue for :
 - public acceptance
 - sustainable energy developments
 - decentralized energy production
 - coupling to biomass

– What can be done ?

- Seasonal storage of renewable electricity
- Convergence between stationary applications & mobile applications
- Developments of PEM & SO electrolyzers
- Exergetic optimization of the whole electrolyzer / storage / fuel cell system
- Development and deployment of refueling stations

55

Areas of developments : green H₂ availability

- Storage of hydrogen
 - 3 main technologies
 - High pressure storage (from 30 to 700 bars)
 - Stationary and transport applications
 - Pros : durability, security, existing industrial process
 - Cons, what has to be improved : cost, manufacturing time, gravimetric density <6%
 - Metal hydrides ("Solid state" storage)
 - Adsorption / desorption of H2 on storage materials
 - Pros : low pressure, security, volumetric density
 - Cons, what has to be improved : mass, gravimetric density (2%), adsorption/desorption kinetics, thermal management of the whole system

Ovonic H2 storage

Areas of developments : green H₂ availability

- Storage of hydrogen
 - 3 main technologies
 - Liquid storage
 - Liquid hydrogen (@ -253°C)
 - Pros : presently, the best mass storage density : 15%, mastered industrial process, low pressure
 - Cons, what has to be improved : cost, limited storage time ability (24h), energy costs for liquefaction
 - Liquid Organic Hydrogen Carrier (LOHC)
 - Pros : long term storage, easy handling, existing refueling infrastructure, security
 - Cons, what has to be improved : system complexity & cost, catalysts, gravimetric density (6%)
 - Ammonia
 - Pros : long term storage, security, high gravimetric density (17%)
 - Cons, what has to be improved : toxicity, decomposition to hydrogen

The emerging hydrogen economy

Part 4 – Overview of hydrogen applications

Hydrogen applications

SCIENCES & TECHNOLOGIES

- Overview of hydrogen applications

Transportation applications

Passenger vehicles

About 20k vehicles around the world today

- France : 350 vehicles
- World : + 7900 vehicles in 2019

• 4 main manufacturers

- Toyota (Japan) 2407 in 2019
- Hyundai (Korea) 4818
- Honda (Japan) 349
- SAIC (China) 300

Roadmaps

- Hyundai : selling 700k fuel cell systems before 2030
- China : 1M fuel cell cars commercialized before 2030

FCEV can compete ICEV before 2030

Major markets : SUV and large vehicles

Transportation

SOURCE: McKinsey Center for Future Mobility; CARB Advanced clean truck; ICCT

Fuel cell trucks

- High requirements in energy and power
 - Power : 250kW to 750kW
 - Energy : 7.5 to 16kg H2 /100km + 400km range at least

Main manufacturers :

- Hyundai (Korea) 1600 ordered
- Dongfeng (China) 500 released
- FC = lowest-cost way to decarbonise both the medium- and heavy-duty segments (by 2025)

Transportation applications

Fuel cell buses / coaches

- High requirements in energy, less in power
 - Fuel cell : 30kW to 200kW for urban buses + battery
 - Energy : 7kg H2 /100km + 300km range at least
- Many manufacturers involved
 - Fast growing market
 - Volvo, Daimler, MAN, Van Hool, VDL, Hino Motors, …
- FC = very interesting for decarbonizing long-range buses & coaches. No real advantage versus battery bus in the short-range market.

Transportation

- Fuel cell trains

SOURCE: McKinsey

Regional trains & freight locomotives

- 1000km max. range
- Fuel cell : 400kW for regional passenger train
- H2: 350 bars, 260kg stored on board, 22-32kg H2/100km

Key manufacturers involved

- Fast growing market, many regional trains already ordered in France and Germany
- Key players : ALSTOM, Siemens, ...
- FC = best solution regarding TCO from 2025 for regional passenger trains...

- Others

Ex : Forklifts

- FC forklifts already outcompete the diesel and the battery in the right conditions
- More than 30000 hydrogen forklifts already in use in the world
- Key players: PlugPower, Hyster-Yale, ...

• Other application areas :

- Aeronautic applications
- Boats
- Garbage dumpsters
- Off-road applications...

🕑 FC LAB

10 kW

Heat and power applications

Mobile power gensets

Hybridized hydrogen-based power gensets

High efficiency

FECHNOLOGIES

Zero noise

Zero pollutant emissions

Indoor & outdoor operation ability

From 1kW to 10kW electrical power

Fast refueling (30 seconds)

FC LAB

μCHP systems

Panasonic CHP Fuel Cell

Over 160000 systems sold

Features:

- 750W electrical power (rated)
- 1080W thermal power (rated)
- Fuel : city gas

Industry feedstock

Various industry feedstock applications

Ammonia production

- 55% of hydrogen produced in the world
- 1MT of ammonia production requires 200kT of hydrogen (mostly grey hydrogen)

Refining

- 25% of hydrogen produced in the world
- H₂ is used to remove sulphur from the produced fuels hydrodesulphurisation
- Methanol production
 - 10% of hydrogen produced in the world

Low-carbon steel production

- 7 to 9% of world CO2 emissions (from fossil fuels) !
- Strong need to decarbonize
- New application area

The emerging hydrogen economy

Concluding remarks

Concluding remarks

- H2 as the missing link of the energetic transition ?

Concluding remarks

- Stop stereotypes...
 - Not enough H2 to power all vehicles !
 - No use to power ALL vehicles... H2 must be used when & where BEV can not reach the requirements
 - Moreover, in 2017 :
 - H2 production worldwide is about 50M tons / year
 - I FCV will need about 150kg H2/year
 - About 350M cars can be powered (about 30% of the cars on road worldwide)

If considering H2 from water electrolysis, how many new power plants are needed ??

- No use to power ALL vehicles... H2 must be used when & where BEV can not reach the requirements
- Moreover, in 2017 (France case study) :
 - In France, only 96TWh of electricity produced from hydro, windfarms, PV panels & bioenergies (approx.. 18%)
 - Considering H2 produced 100% from water electrolysis, and electricity coming only from Hydro, WF, PV & BioEnergies
 - About 40M cars in France (passengers + light duty)
 - For powering 100% of these vehicles, we need to x4,5 (approx.) the electricity produced from renewables... or to increase by 80% the French nuclear power

Concluding remarks

- Reminders !
 - Always 3 point of views
 - Engineer: technological solutions
 - Economist: cost and ROI constraints of the solutions
 - Consumer: decides by him(her)self... based on the perceived value
 - Never forget the golden rule in innovation !

Considering industrial era, in the whole history of innovation, a substitution technology can only prevail if :

1/ it provides (at least) the same level of perceived value than the former technology, at a 30% reduced price

OR

2/ it provides (at least) 30% increased perceived value, at the same price

Thanks to our research team !

() FC LAB

TECHNOLOGIES

The emerging hydrogen economy

Prof. Dr. Daniel HISSEL Univ. Bourgogne Franche-Comte, France

FEMTO-ST Institute, UMR CNRS 6174 FCLAB, USR CNRS

daniel.hissel@univ-fcomte.fr

